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ABSTRACT

A multipolar expansion technique is applied to the indirect
Boundary Element Method formulation in order to solve
Stokes Flow problems. Due to the nature of the algorithm, it
is necessary to resort to the use of an iterative solver for the
resulting algebraic linear system of equations. In comparison
with the direct BEM formulation, the indirect formulation is
more stable with iterative solvers, and does not need to be
preconditioned to obtain a fast rate of convergence. A
parallel implementation is designed to take advantage of the
natural domain decomposition of fast multipolar techniques
and bring further improvement. A good result in memory
saving and computing time is obtained that enable us to run
huge examples which are prohibitive for traditional BEM
implementations.

Keywords: Stokes flow, parallel multipolar algorithm

1. INTRODUCTION

The Boundary Element Method (BEM) is a numerical
method of solution of boundary integral equations, based on
a discretisation procedure. The basis of the method is to
transform the original Partial Differential Equation (PDE),
or system of PDEs, that define a given physical problem into
an equivalent integral equation (or system) by means of the
corresponding Green's representation formula (direct
method), or in terms of continuous distribution of singular
solutions of the PDE over the boundaries of the problem
(indirect method). In this way, the obtained integral equation
satisfies the governing field equation exactly, and one seeks
to satisfy the imposed boundary conditions approximately.
In comparison with domain methods such as the FEM and
FDM, in the BEM the number of degrees of freedom for a
given problem is relatively small, due to the boundary only
nature of the scheme. However, a main drawback inherent in
the BEM is that, dense linear systems must be solved. If a
direct solver is used to solve the system of equations, O(N?)
operations and O(N?) memory are required which limits the
BEM applications to medium size problems due to the
computational costs of storing and solving such dense
systems.

Several O (N) and O (N log N) numerical algorithms are
known in the literature to compute the potential and force
fields resulting from the interaction of N particles (N
particles problem), for which standard solution leads to a
computational complexity of O(N?). These algorithms were
based on the expansion of the potential field generated by N
sources in multipole or Taylor series and grouping far-field
influences.

These methods had immediate implications on BEM for
potential problems, as its discrete linear system is the
product of pairwise interaction between sources. It allowed
in this way the fast evaluation of the integral terms that
constitute the BEM matrixes. Nevertheless, due to the nature

of influence grouping it is not possible to have an explicit
linear system and therefore the use of iterative solvers was
required.

Fast Multipole algorithm is also well suited for
parallelisation due to the regularity of the data structure and
the locality of its data dependencies. It is based on
well-defined domain decomposition where the possible
communications between clusters is known.

2. STOKES FLOW

Consider the problem of determining the low Reynolds
number motion of an incompressible viscous fluid. Under
this condition, the velocity field and pressure (U,p) satisfy, as
a first approximation, the Stokes system of equations for all
x belonging to Q, with dynamic viscosity
2
0 4 = 8—p and % =0

Hox? S ox, oX,

]

Boundary conditions are given in terms of surface
velocity, traction or combination between them according to
the problem considered.

3. DIRECT INTEGRAL FORMULATION

Green's integral representation formulae analogous to those
employed in Potential theory exist for Stokes flow and this
use can be traced back to the work of Lorentz [1]. This
representation formula has been extensively used in the
numerical solution of Stokes problems since the original
work of Youngren & Acrivos [2] (direct approach). The
application of this approach to the case of the first boundary
value problem (Dirichlet type) yields a first kind Fredholm
integral equation for the unknown surface traction.

As is known, Fredholm integral equations of the first kind
generally give rise to unstable numerical schemes based
upon discretization of the surface involved, the instability
manifesting itself in the ill conditioning of the matrix
approximation of the kernel. Nonetheless, it is possible to
apply the discretization method if only low order accuracy is
desired and the system of linear equations to be solved is not
too ill conditioned, as appears to be the case in those works
that have used the Youngren and Acrivos method. On the
other hand, solving a well-posed second kind Fredholm
integral equation is always stable.

For the case of mixed boundary value problems, the
application of the direct approach yields a mixed system of
integral equations of the first and second kinds. No general
mathematical theory is available in the literature for the
analysis of such systems of integral equations.

Although there is an increasing interest in the analysis of
the performance of iterative solutions of the equation sets
arising from the direct BEM formulation no simple
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algorithm has yet been proposed to overcome the lack of
convergence when dealing with large problems. Most of the
successful reported schemes require suitable matrix
transformations and preconditioning to obtain an accurate
result for such large problems. Even in such successful cases,
the required number of iterations required to obtain a
desirable accuracy remains very large and this increases as
the number of unknowns (degrees of freedom) increases.

4. INDIRECT INTEGRAL FORMULATION

The main idea of the indirect formulation is to define an
integral representation formula that produces a well-posed
second kind integral equation, i.e. it is uniquely solvable and
possesses a bounded inverse operator and its analytical
solution is given in terms of a Neumann series (regular or
modified), which is a Picard iteration. It is not always
possible to achieve this with the direct formulation due to
the rigid structure of the Green's formula.

A major difficulty encountered with the indirect
formulation is the necessity of defining a different
formulation for each type of boundary value problem, in
order to obtain a uniquely solvable integral equation of the
second kind, which can be used as the basis of a robust
numerical scheme. Generally this is not straightforward, and
to prove the well posedness of the resulting integral equation
then a formal analysis of the corresponding integral
operators is required.

For an exterior Stokes' flow problem with a prescribed
boundary velocity, i.e. the first kind boundary value problem
(Dirichlet type), Power and Miranda [3] observed that the
double layer representation, which leads to a second kind
integral equation coming from the jump property of its
velocity field across the density carrying surface, can
represent only those flow fields corresponding to surfaces
which are force and torque free. The representation may be
completed by adding terms that give arbitrary total force and
torque in suitable linear combinations. Karrila and Kim [4]
call Power and Miranda's new method the Completed
Double Layer Boundary Integral Equation Method, since it
involves the idea of completing the deficient range of the
double layer potential. Botte and Power [5] extended Power
and Miranda's indirect formulation for the external Dirichlet
problem to the internal one, by looking at the non-flux
condition of an internal incompressible flow instead of the
force and torque conditions of an external flow.

Using similar ideas, Power [6] extended the idea of the
complete double layer approach to the case of an exterior
Neumann Stokes' flow problem (given surface traction), in
which the internal domain is allowed to shrink (air bubble in
a viscous fluid), by completing the deficient range of the
integral operator obtained from the surface traction of a
single layer representation. The resulting integral operator
was completed by adding a harmonic potential source at the
centre of the bubble, which when associated with a constant
pressure is a regular exterior Stokes flow field that
introduced the possibility of compressibility of the internal
gas.

More recently, Bricefio and Power [7] developed a novel
indirect second kind integral equation formulation for the
solution of the mixed boundary value problem that defines
the slow deformation of a viscous drop with several internal
solid inclusions. At the drop surface the fluid surface
traction is given, while it is considered that each of the

interior inclusions moves with a prescribed rigid body
motion.

In contrast with the direct approach where it is not
possible to guaranty the behavior of an iterative solver, an
iterative solution of a well-posed Fredholm equation of the
second kind to fixed precision is bounded and it is
independent of the number of surfaces nodes (for more
details seed Greengard et al. [8]).

The operation count of such iterative approaches is O
(MxN?), where M is the number of iterations. If is possible
to define an integral equation formulation that guarantee M
remains small, even for large degrees of freedom, N, then
the implementation of an iterative solver to obtain the
solution of such formulations will substantially improve the
performance of the BEM solution of the problem. Gomez
and Power [9] compared the behaviour of the GMRES (k)
iterative solver without preconditioning, when it was applied
to solve the algebraic system of equations obtained with the
completed second kind integral equation formulation for the
interior Dirichlet Stokes' flow problem and when it was used
to solve the algebraic system obtained with the classical
direct formulation of the same problem. Gomez and Power's
analysis shows that the number of iterations for the direct
formulation increases with the number of surface points,
reaching a prohibitive value for even a moderate number of
nodes, namely five hundred iterations for 1.8x10° surface
nodes, while the indirect formulation keeps the number of
iterations very small and almost constant, always being less

than 20 iterations even for more than 3x10* surface nodes
(see Fig. 1).
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Fig. 1. Number of iterations to solve the linear system of
equations for the direct and indirect BEM formulation of
exterior Dirichlet problem.

5. MULTIPOLE AND CLUSTERING

Barnes and Hut [10] did much of the early work with
truncated multipole expansions. Their tree-code algorithm
uses an oct-tree data structure to hierarchically subdivide the
simulation domain into well-separated areas, which can
interact via the truncated expansions. Their method reduces
the computational complexity of the problem from an O (N?)
to O(N log N). On the other hand, Greengard and Rokhlin
[11] introduced the concept of local expansion to translate
and sum the effects of multiple remote multipole expansions
into a single local value. By including these local expansions
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with-in an oct-tree data structure, the complexity of the
evaluation was further reduced to O (N).

Expanding the kernel in terms of spherical harmonic
series and using the duality principle between the inner and
outer expansions of harmonic functions Greengard and
Rokhlin [12] were able to achieve an O(N) efficiency. In
general, this type of efficiency can not be obtained by using
Taylor series expansions, since in order to have such a high
degree of efficiency it is necessary to perform some kind of
local expansion, which should be able to translate the
far-fields to single local value, as it is the case in the
harmonic analysis due to the dual principle.

Popov and Power [13] presented a multipole BEM
strategy developed for 3D elasticity problems which is based
on Taylor expansions but requires only O(N) operations and
O(N) memory. Popov and Power’s efficient algorithm
results from the use of a clustering technique, first shift, in
combination with an additional Taylor series expansion
around the collocation points, second shift.

The starting point of the multipole scheme presented in
this work is the Taylor series expansion of the integral
kernel. For example, a single layer integral can be
approximated by the following series:

j Uy (x.Y)8, (y)dT(y) ~ Z{ie,»”“uu(x— LYHS

a=1
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are the moment tensors associated with the sequence
multipoles involved in the expansion. In the above
expressions, N is number of elements that constitute the
boundary, m is number of nodes per element, N*(&,n) is
interpolation function and J (§,m) is the Jacobian of the
co-ordinate transformation.

5.1. Grouping influence

In the process of evaluating the integrals in large domains, it
is found that there are many boundary segments that fall in
the far field, and because of the rapid decay of the
fundamental solutions, like the Stokeslet and Stresslet, they
should be grouped as a unique influence. In the open
literature, many approaches have been proposed to do such
grouping. The simplest one subdivides the domain into a
uniform cube mesh and uses each cell as the base of the
group calculations.

A more adaptive way of grouping based on hierarchical
trees is called clustering. This procedure uses the same cube
mesh, but it is subdivided further only in the places where
the boundary is located. This technique generates a recursive
quad tree, where each cell (or cluster) has eight children and
one parent. In order to add the integrals on the entire
boundary segments inside one cell and transfer the values to
another we have to be able to add the series without actually
evaluating them. Moving the series from centre to centre

}

performs this.

5.2. The first shift

From equation (1) it can be seen that all the moments are

evaluated in respect to the point yg , which in our scheme is

taken to be the centre of a leaf (the smaller cube in the
subdivision). Now the trial solution can be multiplied by the
corresponding moments and added together. According with
this grouping procedure Equation (1) can be expressed in
terms of the following series:

[U, (68, (AN ~ YU (x- YoM,

o N

+ZZU|J>kAkﬂ (x— yO)MJk/\kﬁ €)
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where N represents the total number of leaves and
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where 1 represents the number of elements in the nth leaf
and m is the number of nodes per element. From the above
equation it is possible to see that further grouping is
possible in respect to n. To start the grouping, one must
define a new point in respect to which the moments will be
grouped. This corresponds to grouping in respect to the
centre of a higher-level cluster. Before we proceed further,
we have to make clear that the above expansion is not
applicable over the whole boundary of the problem, as not
the whole surface of the considered domain would belong
to the far field for a chosen collocation point. We assume
that the part "¢ of the full boundary I" belongs to the near
field and that the rest belongs to the far-field. The far field
boundary is divided into elements which belong to leaves
a;...a; which again belong to a cluster on a higher level

with centre in point yf‘ , elements which belong to leaves
b;...b,, which again belong to a cluster with centre in point

yf , etc. In this way the above single layer can be can be

written as

IUi,-(x,y)ﬁ,-(y)dF(y)= jUij(x, y)o;(y)dr'(y)+
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where the new moments are obtained using the following
formula
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Now the new moments can be added and the
procedure can be continued further grouping the far field
influence in larger clusters, yielding

(U698, (nar(y) = [U, 068, (y)dr(y) +
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This transformation allows us to move the series from
one point to another. In the algorithm this approach is used
to move one group of boundary segments to the cell center,
and later from cells of a finer level to a coarser one (see
figure2).

5.2. The second shift

The series given by any of the first shift around a point
yf represents the boundary integral evaluated at the field

point x with reference point at yf . For a collocation point x

at the boundary which is inside a sphere of radius R with
centre at z, chosen here to be the centre of the leaf in which
the element with the collocation point is situated, the single
layer integral can be expressed as:

[Uy oyt ndr(y) = [U, 6yt (n)dry) +
r o ()
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where N is the number of terms taken in the original
Taylor series. The above expressions is obtained in the
same way as before, expanding the integral kernel and its
derivatives at a point x around the point & and replacing
them in the original expansion.

This second shift is done in this way to transfer the far
field of a cell to the boundary points inside it by collecting
influences, adding the coefficients, and at the end, doing the

evaluation at the collocation point on the surface.

To solve the linear system of equations obtained with the
present approach, it is necessary to use an indirect solver.
This is because the multipole clustering scheme applied to
BEM allows us to calculate the value of the boundary
integrals relative to a collocation point, but each value of
the matrix coefficients cannot be obtained explicitly. In this
work, we use the GMRES (k) algorithm (restarted GMRES)
with diagonal preconditioning as a numerical solver of the
multipole system.

6. PARALLEL DESIGN

The parallel algorithm designed based on multipoles and
clusters follows the next guidelines:

6.1. Coarse Parallel and distributed memory

As our principal computational tool is a workstation cluster
that is by definition both coarse and distributed. We use MPI
as the communication standard for portability since it is
supported on most of the hardware available from shared
memory supercomputers to networks of PC's and
furthermore there is an agreement on the standard that is
follow by every implementation.

6.2. No explicit Topology

We do not define explicitly a topology of processors.
Clusters of workstations are physically graphs as each
machine can communicate with any other; therefore it is
possible to assign any symbolic topology on top of it by
software (MPI). For most of the communication of
multipoles integration we use a simple systolic loop,
therefore our model is a closed 1D sequence of processors.
In addition to this, there are other instances where
communication is performed using MPI collective functions
for Broadcast and Collect data that use a different topology
model.

6.3. Costzones based on a two-dimensional Grid

A grid MXN,; XN, of hierarchical trees is used to map

the domain. It also represents our Level 0 of refinement.
Costzones is a technique designed by Singh et al. [14] that,
based on a uniform grid, create a set of contiguous cells that
together have a similar workload. The procedure is based on
one refinement level of the existing quad tree and uses an
estimated load per cell to obtain a recommended workload
per processor. This in general provides a more flexible an
scalable distribution than other methods like ORB
(Orthonormal Recursive Bisection). There are also some
restrictions like the number of cells should be bigger than
the number of processors to guarantee a well balance system
in a highly non-uniform geometry

6.4. Data Replication

Data Replication is wused to avoid close field
communications and reduce it to only far field. As the grid is
used from Level 0, the data transfer between levels of
refinement is also local to the processor. Then all the
interprocessor communication occurs only at the top of the
tree. At this point is when the second shift is important. If
we had follow a direct evaluation strategy instead, the
communication would have taken place on each of the levels
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becoming a non structured transfer, increasing the amount of
small communications and making very difficult to model
and control.

7. PARALLEL FAST MULTIPOLAR BOUNDARY
ELEMENT METHOD

Now we have all what we need to evaluate the integrals of
the Stokes hydrodynamic potentials for BEM, using a Fast
Multipole Method and Adaptive Clustering. The preliminary
steps are as follows: at the beginning the same program is
loaded onto each of the processors in the array following a
model of SPMD (Single Program Multiple Data) under MPI;
each processor loads the geometry that it has been assigned:
it includes the real local geometry and the replicated close
field; then a hierarchical tree is built for each of the Level 0
cells; the momentums of the segments are calculated for the
all the local geometry, as well as the close field integrals.
Each processor performs the following steps for the piece of
geometry assigned to it:

1. Coefficients [M }]kl Ak, ], for n=1,2,...,p, are calculated

once for each boundary segment.

2. Group the coefficients inside each cluster (upward pass):
It uses the first shift to move the series from the boundary to
the centre of the cluster. Later this cluster moves the result to
its parent and so on, until it reaches the Level 0 of
refinement. At this moment each cluster of every level has
coefficients of a series that represent all the integrals inside
itself (see Fig 2).

3. Add the far field of each cluster. On each level, add the
influence of all is brothers that are in the far field. This is
done accumulating the coefficients in the second shift series.
Because the complete tree is not local, part of the far field
information is obtained from the other processors by a
systolic loop. At this step the communication between
processors is necessary.

4.Calculate the final value of the integral on the local nodes
(downward pass) by evaluating the power series of the
second shift on each node inside every cluster.

5.Collect and ensemble the result. At this point each
processor has the value of the far field integral on each of its
local nodes and there is only one more step to go add them
and build a final result. This step performs a collective
communication of the resulting vector.

Fig. 2. Two clusters representing three principal steps of the
multipolar algorithm: (1) upward pass, (2) transfer of far
field and (3) downward pass.

8. CONCLUSION

An application of multipolar technique, parallel
programming of indirect BEM formulations for Stokes flow
problems is developed. In contrast with the direct
formulation, the algebraic systems generated using indirect
formulations are stable and have faster convergency with the
iterative solvers, without the need of any preconditioning.

By the application of the proposed parallel
multipolar-clustering algorithm, good results in memory
saving are obtained enabling us to run very large examples
prohibitive for traditional BEM implementations. The data
structure necessary to solve a problem of 14K nodes was
reduced from a potential 10 Gbytes to just over 20 Mbytes,
when using eight nodes.

Remarkable improvement in the performance of the
BEM solution for Stokes flow was achieved. Although for
small problems the clusters-multipolar scheme may be
slower than the traditional methods, for large problems it
outperforms the former obtaining solutions in a fraction of
the traditional BEM.

The structure of multipolar-clustered scheme is
naturally parallelisable. There was no need of special
designs or lots of additional programming to implement a
parallel version of cluster-multipoles. There was some
consideration of geometry consistency more to do with the
theoretical support rather than the computational limits. As
consequence of this implementation, additional reductions
were obtained on time spent and in memory requirements,
sometimes better than the one to one relation.
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ABSTRACT

A kind of multivariate matrix Padé-type approximants is
studied by the similar ways to those of Brezinski and Kida
in scalar cases. With an arbitrary monic bivariate scalar
polynomial from the triangular form chosen as the
generating one of the approximant, several typical important
properties are discussed and the connection between
generalized bivariate rectangular matrix Padé-type
approximants and Padé approximants is studied. The
arguments given in detail in two variables can be extended
directly to the case of d variables (d>2).

Keywords: Multivariate Padé approximant, Generalized

rectangular matrix Padé-type approximant, Generating
polynomial, Covariance.

1. INTRODUCTION

Let us denote by Mr s the vector space of all rectangular

matrices of size I' XS whose entries are real.

Let F be arectangular matrix formal power series in
two real variables UandV:

Fuv)=> > »,uv. )
n=0i+j=n

The matrix Padé approximation theory has widely been
applied in scattering physics, multiport network synthesis,
design of multi-input multi-output digital filters, ARMA
model, reduction of a high degree multivariable system,
signal processing and systems with the number of inputs

different from the number of outputs [1,2,5,6,7].

In view of several potential applications in multivariable
two-dimensional (2-D) systems theory, the question of
multivariate matrix Padé-type approximants and matrix Padé
approximants is urgent to be solved. Bose and Basu [3]
studied the existence, non-uniqueness and recursive
computation of 2-D matrix Padé approximants with the
inverse matrix. By denoting

N (u,v) = iigi,ju‘vj, M (u,v) = iini,juivj.

i=0 j=0 i=0 j=0
The 2-D matrix Padé approximant is defined as

N (u, V){M (u,V)}" such that

* Supported by the Science and Technology Develop-
ment Foundation of Education Department of Liaoning
Province (2004C060).

FUIM@UV)-NU,v)=>> ¢ uV’
i=0 j=0

with & ;=0 for i=0,1---,n; j=01---,n,
and  i=n+Ln+2,..,n+m+L j=n,+1

n,+2,..,N,+m,+1  excluding the  2-tuple

@, ))=(n+m +1n,+m,+1). Here all matrices

are of size SXS(r=5).

Recently Gu Chuanging [8] considered a bivariate
matrix-valued rational interpolant in Thiele-type continued
fraction form with scalar denominator and matrix-valued
numerator. Similar to the case of vectors, he defined a kind

of Samelson-type generalized inverse of matrix A as

-1 AT < 2 :
wte b acolal- (3 %]

j=1

<N

Where A=(8; )4 AT is the transpose matrix of A .

So the construction process doesn’t need multiplication of
matrices.

In our way of approaching this problem, we have
preferred to following the method given by Brezinski[4] and
Kida[9] in scalar cases: to look for the bivariate rectangular
matrix Padé-type approximant on a triangular grid which
always exists and is unique when the monic bivariate

polynomial § of degree Q is fixed by a normalization
condition. We obtain an order of approximation equal to 2.

after that we give an expression of the error of
approximation. By fixing supplementary conditions, we
have increased the order of approximation. A choice of
supplementary conditions allows getting a unique monic

bivariate polynomial @ (if it exists). The number of the
conditions is linked to I, S and P, (, which requires that

some matrix coefficients are partially used. Finally their
several typical important properties are discussed and the
connection between the bivariate matrix Padé-type
approximants and Padé approximants is studied.

As compared to the existing multivariate matrix Padé
approximants (cf. [3]), the generalized bivariate rectangular
matrix Padé-type approximant doesn’t need multiplication
of matrices in the construction process. Therefore we don’t
have to define left-handed and right-handed approximants. It
may be useful in the noncommutativity problems of the
matrix multiplication. Secondly, the existence condition of
the generalized approximant is relaxed if only the generating
polynomial is not equal to zero. So it can be applied to
singular matrices. Thirdly, the construction of the
generalized approximant can be simplified in the compu-
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tation because it only computes the scalar multiplication
instead of usual matrix inverse.

2. NOTATION AND LEMMAS

In order to give the generalized bivariate rectangular matrix
Padé-type approximants, we start with regarding F (U,V)
as

F@u,v)=p,uv)+7uv)+..+7,Uv)+..

=inww, 6

n=0
where 7, (U,V) is a homogeneous rectangular matrix
polynomial of degree N in Uand V;
7,(U,V) = z 7i,jUIVJ-
i+j=n

Let Hr's’n be the vector space of all homogeneous
rectangular matrix polynomials of degree N in Uand V
with matrix coefficients belonging to M, ;. Let G be

the vector space of all homogeneous scalar polynomials of
degree N in U and V with real scalar coefficients.

Obviously 7, (u,v) eH, .
Let K denote the vector space of all matrix formal

power series F(U,V) as defined in Eq.(2) with matrix
coefficients belonging to Mr'S . Addition is defined by

5,00+ 400 =3 e, 00+ £,0.0)

For I =S, multiplication is defined by

Sen)|[Zawn)
- i( D (u,v)B (u,v)j.

i+j=n
Then FS'S forms a ring. A matrix polynomial in U and
V is regarded as an element of Frs by natural

identification. In Eq. (2), the smallest integer N such that
7,(U,v) #0 is called the order of F(U,v) and
denoted by Ord(F) . The notation F(u,v)=0(n)
means that Ord(F) > n.

Let P (respectively Pn) will denote the vector space of

all bivariate polynomials (resp. of degree less than or equal

to N ) whose coefficients are real. Let PrS

(respectively P

rsn ) denote the vector spaces of all

rectangular matrix polynomials (resp. of degree less than or
equal toN) in two variables UandV, and whose matrix

coefficients belong to M, .

Let us consider the “formal Laurent series” in X with

coefficients in P ; that is, the formal series in X such that
the coefficients are polynomialsin U andV;

h(u,v, X) = a, (U, V)X +a,,, (U, V)X™" +---,
ai (U,V) € Pv' = m,m+1,...,

where M is an integer which may be negative. Addition
and multiplication are naturally defined by

Zai (u,v)x' +Zci(u,v)xi :Z“{ai(u,v)+ci (U, V)Ix';
D a (U, V)X (u,v)X

:Z( Z ai(U,V)Cj (U,V) Xk.

i+j=k
Let L. denote the totality of the above “formal Laurent
series.” Then L includes the vector space of all poly-
nomialsin X over P.InL , we set

1 =1+ X+ X+ X+,
1-x

_ 1
X"(1-x)

For a given matrix formal power series Eq.(1), let us now
define an operator ' by:

V(Zai(ulv)xij:Zai(uav)7i(u1v)’

(With the convention that ¥, (U,v)=0 fori<0),

n+2

=X "X "M x4 @)

where the infinite sum Zai u,v)y,(u,v) is well
i

definedin K, ; since ord(a;y;) =i for i=0,1,---.
This operator has the following property:
For any two scalar polynomials Y, (U,V),Y,(u,V)

and h (u,v,x),h,(u,v,x) € L, wehave
A (Y (U v)h (U, v, X) + Y, (U, v)h, (U, v, X))

=¥, (U, V)A(h (U, v, X)) + ¥, (U, V) A (hy (U, v, X)).
(4)
We define the operator ]/(n) by
7™ (h(u,v,x)) = y(x”h(u,v, x))
For h(u,v,Xx) € L,where N is an integer. Then 7"
also has the same property Eq. (4) as ). Operating ¥ or
7(n) on the special element X' of
y(X)=r7@uyv)  ad  yOX)=y,..UV),
where 7, (U,v)=0 for n<0.
We immediately have the following lemma by Eq.(3).

L, we have

Lemma2.1. For N<0, wehave
7(n) (ﬁ) =F(u,v).
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Consider a homogeneous polynomial with respect to the
three variables U,V and X which is expressed as

follows:

9(u,V, X) = by (U, V)X* +by (U, V)X* +---+ b, (U, V),

b,(u,v)=1b,(u,v) €G,. (5)

We call g(U,V,X) a monic homogeneous polynomial
of degree (]. Set

g(u,v) :E(u,v,l) :bo(u,v)+b1(u,v)+---+bq (u,v),
then g(u,v) € P,.

Let us now define

W(n)(U,V) :y(g(U,V)—XnE(U,V, X)],
1-x

where Nis an integer, then AR (u,v) is called the

N -associated matrix polynomial of ¢(U,V,X)
g(u,v).
About W ™ (u, V), we have the following lemma.

Lemma22. 1f W™ (U,V) is defined above, then
(n)
w (U V)E r,s,g+n-1°
Proof.

W (u,v) = 7/[ {Zb (u,v)— Zb (U, V)X J}]
_Zb u, v);/[ Xq;n J].

If n>0, then
q

W (U,v) =37, (U V) {7 (U V) + o+ Fyn 2 (U V)
j=0

If n<0, then
g+n-1

WO u,v)= > b, (u,v)y(1+ X+X +.+ xq*”""l)

i=0

: _
- > b (u,v)y(x’1+x’2+...+xq*”")
j=g+n+1
g+n-1

- Z b; (u,v){;/o(u,v)+...+7/q+nfj71(u,v)}_

In both cases, since the term bj(U,V){}/O(U,V)+...
+yq+n_j_1(u,v)} is a matrix polynomial of

degree +N —1, we get the result.

Lemma 2.3.

F(Uv)g(u,v)-W O u,v) =/ (%]

=0(g+n).
Proof.
F(u,v)g(u,v)-W™(u,v)

—y[ j(uv) (g(“’v)—xng(u,v,x)]

1-x

_}/ (g(:tl_v X)J (iibl (U,V)quﬂmj

i=0 j=0
q

i bj (U,V)}/q_j+n+i (U,V).

i=0 j=0
Noting that ord(;y, ;.,.;)=d+n, we get the
result.

3. GENERALIZED MULTIVARIATE MATRIX
PADE -TYPE APPROXIMANTS

Firstly we give the following definition:

Definition 3.1. Let (U,V, X) be a monic homogeneous
W (u,v) the
(p—qg+1) -associated matrix polynomial of g (U, V, X),,

W {00 )

where g(U,V) =g(u,V,1). Then W (u,v)/g(u,v) is
called the generalized bivariate matrix Padé-type
approximant and denoted by (P/Q)q(U,V). We call

polynomial of degree (¢ and

E(U,V, X) a generating polynomial of the generalized
bivariate matrix Padé-type approximant (p/q)F (U ) V).

By Lemmas 2.2 and 2.3 for N=p—Qg+1 we
immediately have:

Theorem 3.2. Let
(P/@)e (u,v) =W (u,v)/g(u,v),
where g(u,v):ﬁ(u,v,l). Then g(u,V) is a scalar

polynomial of degree ( and W (U,V)
polynomial of degree . Moreover,

F (U, V) g(U,v) =W (u,v) = 7 qﬂ)(g(f va)j

=0(p+1). (6)

a matrix

The generalized bivariate matrix Padé-type approximant

generated by Q(U,V,X) is uniquely determined in the
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sense of the following theorem.

Theorem 3.3. Let
(p/a)e (u,v) =W (u,v)/g(u,v),

where  g(UV)=g(Uv.D). It  W(uv)eP,,
such that

F(u,v)g(u,v)-W (u,v) =O( p+1),

@
then W(u,v) =W (u,v).
Proof. It follows from Eq.(6) and Eq.(7) that
W (u,v) =W (u,v) = O(p+1).

As W (U,v) =W (U, V) is a matrix polynomial of degree

P, we get the result.
Following the proof of Lemma 2.2, we can get

Theorem 3.4. Let (P/q)q (u,v) =W (u,v)/g(u,v)
and
g(u,v) =b,(u,v) +b (u,v) +---+b, (u,v),
b,(u,v)=1b,(u,v) €G,.
Then W (U,V) is expressed as follows:
min(p,q)

WEY)= 3 B {7+ AU+ 47, @)}

Theorem 3.5. Let §(U,V,X) be a monic homogeneous

polynomial of degree (, g(u,v):a(u,v,l). Consider
the function

W _ . (p-q+l) g(U,V)—a(UMX)
W) =7 [ —o J

(@If Pp<q, then
(p/a): (U,v) =W (u,v)/g(u,v).
(b) If P =(, then
(P/Q)r (U, V) = 75 (U V) + 74, U V) ++- 4 7, o (U,V)

+W(u,v)/g(u,v).
Proof. (a) For P <(, we have

7(P*q+1) (1})() — 7(1})(} — F(U,V),

and
W(u,) = y(ij QU)o (Mj
1-X 1-x
_ 7(g(U,V)—);-p_q; g(u,v, X)] “W (V).

This implies the result of (a).
The result of (b) follows from

{7 +7UV) ++7, UV)} 9U V) +W(U,V)

x‘”‘*l{g(u,v) —g(u,v, x)}
1-x

=y (1+x+...+x‘“*)g(u,V) *

:y(g(u,v)—xp‘q*lﬁ(u,v, X)j =W (u,v).
1-x

4. FUNDAMENTAL PROPERTIES

By using Theorems 3.2 and 3.3, we can easily prove the
following property:

Property 4.1 (Linearity). Let Q(u,v) = AF(u,v)
+P (u,v),
AeM

r,r?

<p-q (P (u,v)=0 for p<q). Then
(p/@)q (u,v) = A(p/A)e (U, V) + R (u,v),

Provided that the above two approximants have the same
bivariate generating polynomial.

where

P.(uv)eP 0<k

r,s,k?

From the unicity property, we can easily prove the
following result.

Property 4.2 (Translation). If U, (u,v) e H
F(u,v)=U, (u,v)G(u,v), then
(p+K/Q)e (u,v) =U, (u,v)(p+k/a)g (U, V),

Provided that the above two approximants have the same
generating polynomial.

Proof. If (p/Q) (U, V) =W (u,v)/g(u,V), then
G(u,v)g(u,v)-W(u,v)=0(p+1).

On premultiplying both sides of the above equation by

U, (u,Vv), we obtain:

F(u,v)gu,v)-U,(u,v)W(u,v) =0 (p+k+1).

r,s,k?

The result follows from Theorem 3.3.

By Property 4.2 and the additivity of generalized bivariate
matrix Padé-type approximants, we can easily prove the
following property.

Property 4.3. If F(u,v)=uG(u,v)+VH (u,v);
then

(P+1/a)e (u,v) =u(p/a)g (U, V) +v(p/a)y (U, V),

where the above three approximants have the same
generating polynomial.

From previous definitions and the construction of
(p/@)e (u,Vv), we can easily prove the following

property.

Property 4.4 (Symmetry). If F(v,u)=F(u,v), ie
7i(v,u)=7(u,v)(i=0,12,..), then
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(p/A)e (v,u) = (p/a)e (u,v),
Provided that the two approximants have the same
generating  polynomial g(u,v) such  that

g(v,u) =g(u,v).

T,(u) =Proj, T (u,v) =T (u,0),
T,(u) = Proj, T (u,v) =T (0,v),

where T(U,V) is a scalar polynomial or a matrix
polynomial of size P X (. Then we have

Denoting

Property 4.5. (Projection) Let

(p/a) (u,v) =W (u,v)/g(u,v). then

Proj, (p/a) (u,V) = (p/d)g, (u) = G(u)/{Proj,g(u,v)},
Proj, (/)¢ (u,v) = (p/)e, () = G(u)/{Proj,g(u,v)},
where G(u), H (V) are matrix polynomials of size

pxq.

Proof. By the fact that

F(u,v)g(u,v) =W (u,v)+O(p+1),
We have
F, (u)Proj,g(u,v) = Proj W (u,v) + O(uP*™),
where Projug(u,v) is a polynomial of degree ( in
U and Proj W (u,v) of degree P in U. Therefore

the first result follows from the unicity of the univariate
matrix Padé-type approximant. The second result can be
proved in the similar way.

Property 4.6. Set

. au+bv ,_a'u+b'v
1+cu+dv’ 1+cu+dv’
Let r=s, F(u,v)=G(u'v),

(p/p)G(UI:V'): W(UlaV')/g(U',V'),and
(p/P)r (Uv) = Q(UV)/{@+cu+dv)" g(u'v)};

then Q(u,v)=1+cu+dv)"W(u'v", ie.
(p/A)e (U, V) =(p/A)g (U, V).

Proof. Firstly we have

Gu',v)gu',v)-W(u',v)=0(n+1).
After multiplying both sides by (1+ CU +dv)", we get
_ (I+cu+adv)'W(u',v) .
(p/P)(u,v) = Lrou i) o) =(p/Ps U’ V),

from the unicity property.

From the previous definitions and the unicity property, we
can prove the following properties.

Property 4.7. Let

(P/A)e (u,v) =R (u,v)/g(u,v)
=F@u,v)+H_.,uv)+0(p+2),H_,u,v)eH

p+l p+1 r,s,p+l?

and (p+1/q)c (u,v) =P,(u,v)/g(u,v). Then
R,(U,Y) = RUv) - g(0.0H, ,(u.v).

Property 4.8. Set G (U ) V) = AF (U ) V) B,

AeM BeMs’s. If

r,r?

(p/9)¢ (u,v) =W (u,v)/g(u,v)
and (P/@)g (U, v) =Q(u,v)/g(u,v),
then Q(u,v) = AW (u,V)B, ie.

(p/a)g (U, V) = A(p/q)¢ (u,V)B.

5. GENERALIZED MULTIVARIATE MATRIX
PADE APPROXIMANTS

In this section we want to construct generalized bivariate
rectangular matrix Padé-type approximants

(p/q)F (U,V) of order greater than [. In fact we look

for a generating polynomial g(U,V,X) such that this

order is maximal. To obtain that, we have to cancel the
matrix coefficients of the first matrix polynomials

_ q
7(p*q+1) (XI g (U,V, X)) = ij (U,V)7p_j+1+i (u’ V)
j=0

(1=0,1,2,...) In Theorem 3.2. The unknowns are the

coefficients of the unknown polynomials
b,(u,v),...,b,(u,v) in g(u,v,x) which are
(q+3)q/2  entries. On the other  hand,

y(pfqﬂ)(xig(u,v,x)) is a homogeneous matrix

polynomial of degree p+i+1 in Uand V . By
identically equating the terms of
uP* vl (j=0,1,..., p+i+1) on both sides, we
find that every matrix equation group

(Pt (xiE(u, v, x)) =0
Is equivalent to p+i+2 matrix equations of size
rxs, ie, (P+i+2)rs scalar equations in which
appear the ((+3)(/2 coefficients of the unknown
polynomials bl(u,v),...,b (U,V) linearly.

Let us denote by E(a) the integer part of real number
a. Set

_ 3) . (@+3gq (.3
k=E \/(p+zj +—rs (p+zj )

_(q+3)q_(2p+k+3)kr
2s 2
then ISeZ and 0<I<(p+k+2)r.

(q+3)q/2

For  obtaining equations  with
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(q+3)q/2 unknowns, we shall have to use K matrix
equation groups

7 (X g(u,v, %)) =0 (1=0,1,...k-1)

and IS supplementary scalar equations extracted from the
following matrix equation group

7" (X g(u,v,%)) =0 ®
Which are the first E(I/r) matrix equations of size
I xSand the first {| —rE(I/r)}s scalar equations of
the (E(l/r)+1) -th matrix equation of size I'xS. By
denoting t=I1—rE(l/r), then the above
{I-rE(l/r)}s scalar equations are the first E(t)
lines and the first {t — E(t)}S entries of the (E(t) + 1)-th

line from the (E(t)+1) -th matrix equation of the matrix

equation group Eq.(8). Here choosing the first 0 ones
indicates choosing none of them.

For simplicity, we denote this choice about the matrix
equation group Eq. (8) by

A (xkg(u,v, x)) =0.

Theorem 3.2 immediately gives us the following result.

Theorem 5.1. If the monic homogeneous polynomial

g(u,v,X) of degree ( satisfies the following relations
e (xi g(u,v, x)) =0(i=0,1..,k-1)
then the bivariate rectangular matrix Padé-type approximant

(p/q)e (u,V), having g(u,V,X) as the generating
polynomial, has an order of approximation at least equal to

p+k+1.

Therefore the generalized bivariate rectangular matrix
Padé-type (p/q)e (U,v),  having

g(u,v,x) as the generating polynomial is an

approximant

approximant of F(U,V) with an order at least equal to
p + Kk +1. Moreover some lines and entries have an order
of approximation at least equal to P + K+2 with respect

to the corresponding lines and entries of F (U, V). This
approximant will be called a generalized bivariate
rectangular matrix Padé approximant of F (U, V) .

Now we study the problem of existence and uniqueness of

polynomial g (U, V, X) .
Let us write

b(uv)=>b uv b, eR
j=0

In Eq.(5). From above discussion, ¢(U,V,X) exactly
satisfying the following relations

q S
ypm(u,v)biju"‘vJ =0,

i=0 j=0 ’

q i

Z 7/p+2—i (U’V)bl Jul JVJ = 0'

i=0 j=0

Y ViU utv =0,

>
i=0 j=0
q
—(p-q+1) i i
DIV (xP*" )b, juvi =0, (9)
i=0 j=0
By setting to zero the coefficients of the terms of

uP™t N (m=0,1,...,k;i=0,1...,p+m+1)
on the left sides of every matrix equation group in system
Eq.(9), we get a system (*) including (q+3)q/2
scalar equations in which appear the coefficients of the

unknown polynomials b, (U,Vv)(i =1,2,...,q) linearly.

Let us denote by M (P9 the plock coefficient matrix of
system (*), then

(p.a)
M € Mq(q+3)/2,q(q+3)/2'

We obviously obtain the following result.

Theorem 5.2. The bivariate rectangular matrix Padé
approxi- mant [P/ ] (U,V) exists and is unique if and

only if the coefficient matrix M () of the system (*) is
regular.
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ABSTRACT

A parallel algorithm FAST_LCS for the longest common
substring (LCS) problem is presented. For two sequences
X and Y with length n and m, the time complexity of
parallel computing is O (JLCS(X, Y)|), where |[LCS(X,
Y)| is the length of the LCS of X, Y. For n biosequences

X, X5, oo, X time complexity of our parallel

n b
algorithm is O(|LCS(X;, X, , Xy D which is
independent of the number of sequences n. Experimental
result on the gene sequences of tigr database shows that

our algorithm is faster and more efficient than other LCS
algorithms and can get exactly correct result.

Key  words:
subsequence.

bioinformatics;  longest common

1. INTRODUCTION

Searching for the longest common subsequence (LCS) of
biosequences is one of the most important problems in
bioinformatics [1,2,3,4,5]. Presented in 1981 ,
Smith-Waterman algorithm [6] is a well known LCS
algorithm which was evolved from the
Needleman-Wunsch [7] algorithm for LCS of two
sequences. For the LCS problem of multiple sequences
[8,9], time complexity grows very fast when the number
of the sequences increases. The MSA program [10] can
process up to ten closely related sequences. Stoye
described a new divide and conquer algorithm DCA [11]
sits on top of MSA and expands its capabilities.
Clustal-W [12] is one of the most widely used multiple
sequence alignment software. It was developed by
improving Feng and Doolittle’s algorithm [13] so as to
enhance the correctness. Although the improvement is
done, strong limitations remain on the number of
sequences that can be handled.

In this paper, we present a fast algorithm named
FAST LCS for the LCS of multiple biosequences. The
algorithm first seeks the successors of the initial
identical character tuples according to a successor table
to obtain all the identical tuples and their levels. Then by
tracing back from the identical character tuple with the
largest level, the result of LCS can be obtained. For n

sequences X;, Xp, ... , X time complexity of

n B
sequentially execution of our algorithm is O(L), here L is
the number of identical character tupelos, and time
complexity of our parallel algorithm is O(JLCS(X,,

X3, ..., X)) which is independent of the number of

sequences N. Experimental result on the gene sequences
of tigr[14] database using MPP parallel computer
Shenteng 1800 shows that our algorithm is faster and
more efficient than other LCS algorithms and can get
exactly correct result.

2. IDENTICAL CHARACTER PAIR AND ITS
SUCCESSOR TABLE

Let X:(Xl, Xa, .ee

»Xp ), Y = (Y1, Y2 .-, Ypy) be two

biosequences, where XY € {A,C,G,T}. We can define

an array CH of the four characters as A=CH (1), C=CH
(2), G=CH (3) and T=CH (4).To find their longest
common subsequence, we first build successor tables of
the identical characters for these two strings. The
successor tables of the identical characters of X and Y are
denoted as TX and TY which are 4*(n+1) and 4*(m+1)
two dimensional arrays. TX (i, j) is defined as follows.

» Xp )
its successor table TX of identical character is defined
as :

Definitionl. For the sequence X=(X, X3, ...

TX(i,j):{min{Mkesx(i’j)} SX(i, ) # ¢ Eq. (1)

- otherwise
Here, SX (i, )={k| x) =CH(), k>j}, 1=123.4,]=

0,1,...n. It can be seen from the definition that if TX(i, j)
is not “—7, it indicates the position of the next character

identical to CH(i) after the X; in sequence X, if TX(i, j)

is equal to “—7, it means there is no character CH(i)

ft .
after x;

Examplel LetX=“TGCATA”Y=“ATCTG
A T”. Their successor tables TX and TY are:

TX:
i 0 1 2 3 4 5 6
1 4 4 4 4 6 6 -
2 03 3 3 - - . .
302 2 .- o
4 1 5 5 5 5 - -
TY:
i 0 1 2 3 4 5 6 7
1 1 6 6 6 6 6 - -
2 3 3 3 - - - -
35 5 5 5 5 - - .-
4 2 2 4 4 7 7 T -




14 DCABES 2006 PROCEEDINGS

Definition2. For the sequences X and Y, if x; =Y

we call them an identical character pair of X and Y, and
denote it as (i, j). The set of all the identical character
pairs of X and Y is denoted as S(X, Y).

Definition3. Let (i, j) and (k, I) be two identical
character pairs of X and Y. If i<k and j<I, we call (i, j) a
predecessor of (k, 1), or (k, I) a successor of (i, j), and
denote them as (i, j)<(k, I).

Definition4. Let P(i, j) = {(r, 9)|(i, J) <(r, ), (1, $)E
S(X, Y)} be the set of all the successors of identical pair
@, ), if (k, DEP(, j) and there is no (k’, I’)EP(, j)
satisfying the condition: (k’, I’) < (k, I), we call (k, I) a
direct successor of (i, j), and denoted it as (i, j) < (k, I).

Definition5. If identical pair (i, j) € S(X, Y) and there
is no (k, N E€S(X, Y) so that (k, I) < (i,]), wecall (i,])
an initial identical pair.

Definition6. For an identical pair (i, j)€S(X, Y), its
level is defined as follows:

1 if(i, j)is an initial identical character pair

IEVEI(Lj)={max{level(k,l)+1‘(k,l)<(i,j)} otherwise Eq. (2)

From the definitions above, the following lemma can
be easily deduced:

Lemmal. Denote the length of the longest common
subsequence of X, Y as |LCS(X, Y)|, then [LCS(X,
Y)|=max {level (i, j) |(i, ) ES (X, Y)}.

3. THE OPERATIONS OF
SUCCESSORS AND PRUNING

PRODUCING

In the first step of our algorithm, all direct successors of
all the initial identical character pairs can be produced
using the successor tables. Then, the direct successors of
all those successors produced in the first step are
generated. Repeat these operations of generating the
direct successors until no more successors could be
produced. Therefore, producing all the direct successors
for the identical character pairs is a basic operation in
our algorithm.

For an identical character pair (i, j)€ S(X, Y), the
operation of producing all its direct successors is as
follows:

(0, ) —>{TX(kD.TY(K ) k=1234TX(k. ) #-andTY(k, )=~} Eq. (3)

From (3) we can see that this operation is to couple
the elements of the ith column of TX and the jth column
of TY to get the pairs. For instance, the operation on the
identical character pair (2,5) in Example 1 is illustrated
as follows:

46 4 6)
— 3 - 46
(2 5)> 3 - ( ) —>{( )}
o B (G R (CR)
57 (5 7)
Since (3,—) and (—,—) do not represent identical

character pairs, they only indicate the end of the process
of searching for the successors in this branch. After
discarding (3,—) and (—,—), the successors of (2,5)
are just (4,6) and (5,7). It should be point out that the
successors produced in the operation are not all direct
successors of (i, j). For example, (5,7) is not the direct

successor of (2,5), since (2, 5) < (4, 6) <(5, 7).

Lemma2. For an identical character pair (i, j), the
method illustrated above can produce all its successors.

Proof of Lemma 2 is omitted due to the limited space.
It is obvious that (TX (k, 0), TY (k, 0)), k=1, 2, 3, 4, are
all the initial identical pairs of X and Y. By Lemma 2, we
know that starting from those initial identical pairs, all
the identical pairs and their levels can be produced by
the method illustrated above. In such process of
generating the successors, prune technique can be
implemented to remove the identical pairs which can not
generate the longest common subsequence so as to
reduce the searching space and accelerate the speed of
process.

Theoreml. If on the same level, there are two
identical character pairs (i, j) and (k, I) satisfying (K,
D>(i, j) , then (k, I) can be pruned without affecting the
algorithm to get the longest common subsequence of X
and Y.

Proof of Theorem 1 is omitted due to the limited space.
By Theorem 1, the pruning process can be implemented
to remove all those redundant identical pairs. For
instance, (4, 6) and (5, 7) in Example 1 are the
successors of the identical pair (2, 5). Since they are on
the same level and (4, 6) < (5, 7), we can prune (5, 7) by
Theorem 1.

Some other prune operations are also helpful to reduce
the searching space. These prune operations are based on
the following theorems and corollaries. Due to the
limited space, we omit the proofs for these theorems and
corollaries.

Theorem?2. If on the same level, there are two
identical character pairs (iy, j) and (i, j) satisfying i,<i,,
then (i,, j) can be pruned without affecting the algorithm
to get the longest common subsequence of X and Y.

Corollaryl. If there are identical character pairs (i, j),

(i, )), === ,(ir, J) on the same level and ii<i;<+-<i,,

then we can prune(i,, j),*,(i,, j)-

4. FRAMEWORK OF THE ALGORITHM

Based on the operations of generating the successors of
the identical character pairs using successor tables and
the pruning technology, we present a fast longest
common subsequence algorithm FAST LCS. The
algorithm consists of two phases: the phase of searching
for all the identical character pairs and the phase of
tracing back to get the longest common subsequences.
The first phase begins with the initial identical character
pairs, then continuously searches for their successors
using the successor tables. In this phase, the pruning
technology is implemented to discard those search
branches which obviously can’t obtain the optimum
solution so as to reduce the search space and speed up
the process of searching. In the algorithm, a table called
pairs is used to store the identical character pairs
obtained in the algorithm. In the table pairs, each record
takes the form of (k, i, j, level, pre, state) where the data
items denote the index of the record, the identical
character pair (i,j), its level, index of its direct
predecessor and its current state. Each record in pairs
has two states. For the identical pairs whose successors
have not been searched, it is in active state; otherwise it
is in inactive state. In every step of search process, the
algorithm searches for the successors of all the identical
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pairs in active state in parallel. Repeat this search
process until there is no identical pair in active state in
the table. The phase of tracing back starts from the
identical pairs with the maximal level in the table, and
traces back according to the pred of each identical pair.
If there are more than one identical pair with the
maximal level in the table, the tracing back procedure
for those identical pairs can be carried out in parallel and
several longest common subsequences can be obtained
concurrently. This tracing back process ends when it
reaches an initial identical pair, and the trail indicates
the longest common subsequence. The framework of the
algorithm FAST LCS is as follows:

Algorithm-FAST_LCS (X,Y)

Input Xand Y: Sequences with lengths of m and n
respectively;
Output

X,Y;

Begin

1. Build tables TX and TY;

2. Find all the initial identical character pairs:
(TX(k, 0),TY(k, 0)), k=1,2,3,4;

3. Add the records of the initial identical pairs
(k,TX(k, 0),TY(k, 0), 1, &, active), k=1,2,3,4 to
the table pairs.

/* For all